If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5=33
We move all terms to the left:
4x^2+5-(33)=0
We add all the numbers together, and all the variables
4x^2-28=0
a = 4; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·4·(-28)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*4}=\frac{0-8\sqrt{7}}{8} =-\frac{8\sqrt{7}}{8} =-\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*4}=\frac{0+8\sqrt{7}}{8} =\frac{8\sqrt{7}}{8} =\sqrt{7} $
| 15−4t=3t= | | 6+7(v+12)=-8-2(10v+5) | | 16=(x3)8 | | y÷(-2)=-49 | | 3(3x+4)=10x+13 | | (2x-25)+(3x+30)=180 | | 5d–3.3=7. | | 6.y+7=23 | | 8s-5s=12 | | 41=c-18 | | 14j+8=−16+2j | | -2(-8-3x)=2(-5x+8) | | 9k=42-6k | | 22-x=-5x+6 | | 12+2(1+9n)=-2(n+9)-12n | | 15-4t=3t= | | 3n+15=6(n-1) | | 9(-2x-2)=-9(6x-9) | | 40xX=273 | | -2+4v=-7(v+5) | | -4(x-2=-2(x-17/2) | | |x-1250|=150 | | -3.1x+7-7.4x=1.5x-6(x-3/6) | | 8-4x=-3x+2 | | 2n-3=17n= | | 3b+1=154 | | 4x–12=-36 | | 10x+45-13=11(5x+6) | | -x+2=-7x+10 | | 7+5x=4(-5x+8) | | 1/3(6t-54)=t-4 | | 5m-8=4=31 |